Mechanics and Introduction to Spacial Relativity


Outline of the Course - Newtom’s Formalism

  1. Basic Math: Calculus - differential method, vector - Linaer Algebra
  2. Newton’s Law (Equation of Motion)
  3. Conservation: Momentum, Energy, Angular Momentum (Rotation)
  4. Non-inertial
  5. Two important Models: Central field and Oscllation
  6. Wave - Electro-megnetic (Light): Description of Wave, Interference of Wave (Young’s)
  7. Special Relativity: Kinematics (Event (x,t)(x,t) Transform), Dynamics(Momentum and Energy)

Mechanics

Q&A:

  1. What is the simplest question trying to solve? Motion of an object.
  2. The simplest object? Point (Mass - Intuitive).
  3. Motion? Change of the position over time. Trajectiory x(t),y(t),z(t)x(t),y(t),z(t)
    1. Coordinate System: Origin + Base vectors (change of coordinate sys)
    2. Reference Frame
    3. Other Physical Properties:

      vx=x˙v_x = \dot{x}

      ax=x¨a_x = \ddot{x}

      px=Mx˙\vec{p_x} = M\dot{x}

      K=12mv2K=\frac{1}{2}m|\vec{v}|^2

      L=r×p\vec{L}=\vec{r}\times\vec{p}

  • Newton’s Differential Thinking (1-Dimensional)
    Want to predict x(t) at same later, what are the initial information needed?
    • Initial position x0x_0
    • Initial velocity x˙0\dot{x}_0
      t1=Δtt_{1}=\Delta t can be predicted.
      t2=2Δtt_2=2\Delta t?
    • Initial acceleration x¨0\ddot{x}_0
      3Δt3\Delta t? Any Δt\Delta t?dnxdtn\frac{d^{n}x}{dt^{n}}?
    • Force provided FF - Power of Newton’s Law of Motion: F=mx¨F=m\ddot{x}
    • State of Motion: (x,x˙)(x,\dot{x})
  • Fundamental Symmetries in Classical Mechanics
    • Homogeneous and Isotropic of Space and Time (We have to believe in them)
      • Homogeneous of space: Translational Invarience (Symmetry) \rightarrow Freedom choice of origin
      • Homogeneous of time: Translational Symmetry of time
      • Isotropic of space: Rotational Symmetry about space \rightarrow Freedom choice of Base
      • Isotropic in time: Time Reversal Symmetry, Physical laws in particle microscopic scale are time-reversal(But of course, a broken glass seemed to be not time-reversal. It’s about Probability but not about capability)
    • Relativity Principle: Physical laws are same to all inertial frame.(No absolute Motion of ref. frame can e detected by doing experiments in your frame)

    Understand Basic Force (Gravity, Col.) In Physics
    (x1,x˙1),(x2,x˙2)    F=f(x1,x2,x˙1,x˙2,t)(x_1, \dot{x}_1),(x_2, \dot{x}_2) \implies F = f(x_1, x_2, \dot{x}_1, \dot{x}_2, t)
    F=f(x1+a,x2+a)=f(x1,x2)=f(x1x2)F=f(x_1+a,x_2+a)=f(x_1,x_2)=f(x_1-x_2)
    F=f(x1,x2,t)=f(x1,x2)F=f(x_1,x_2,t)=f(x_1,x_2)
    Force is an interaction that time-delayed.
    Newton’s Day: No delay, Non-local
    Our view: time delay,local, τ=Lc\tau = \frac{L}{c}
    F1=f(x2x1)F_1=f(x_2'-x_1)
    x2==x2+v2τx_2==x_2'+v_2\tau
    F=f(x1x2v2τ)F = f(x_1-x_2-v_2\tau)
    Classically Newton thinks τ0\tau\to0, force like F=qv×BF=q\vec{v}\times\vec{B} depends on vv.

    • Realistic System: Superposition Principle.
  • Newton’s Mechanics has limitations (incomplete)
    • not too fast, β=vc<<1\beta=\frac{v}{c}<<1
    • not too small, =h2π0\hbar=\frac{h}{2\pi}\to0
    • not too heavy, m<<Mm<<M
  • Reason Stdying Newton
    • simple
    • Correspondence Principle - a test to new theories

1-D Kinematics

  • Math: Single Variable Calculus.
    1. Derivative:
      1. f(x)=dFdxf(x)=\frac{dF}{dx}

      2. Taylor Expansion
    2. Integration

2-D Kinematics - Vector(Linear Algebra)

  1. vector(Geometry): an arrow with a magnitude(Norm, Module,length…) and a direction
  • a^=AA\hat{a}=\frac{\vec{A}}{|\vec{A}|}
  • in order to define a vector, we need to define the summation rule: Parallelograph
  1. analytical expression of a vector in base

A=Axi^+Ayj^=[AxAy]\vec{A}=A_{x}\hat{i}+A_{y}\hat{j}=\begin{bmatrix}A_{x}\\A_{y}\end{bmatrix}

  1. Dot Product & Cross Product
  • Wave Function:

    ϕ=eikxωt\phi=e^{ikx-\omega t}

    General plane wave:

    φ=eikrωt\varphi=e^{i\vec{k}\cdot\vec{r}-\omega t}

  • Finding projection
  1. Transformation of vector’s expression